Finite element analysis and optimization of a single-axis acoustic levitator

A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 57(2010), 2 vom: 15., Seite 469-79
1. Verfasser: Andrade, Marco A B (VerfasserIn)
Weitere Verfasser: Buiochi, Flávio, Adamowski, Julio C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM195315049
003 DE-627
005 20231223202530.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2010.1427  |2 doi 
028 5 2 |a pubmed24n0651.xml 
035 |a (DE-627)NLM195315049 
035 |a (NLM)20178913 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Andrade, Marco A B  |e verfasserin  |4 aut 
245 1 0 |a Finite element analysis and optimization of a single-axis acoustic levitator 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.05.2010 
500 |a Date Revised 24.02.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Buiochi, Flávio  |e verfasserin  |4 aut 
700 1 |a Adamowski, Julio C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 57(2010), 2 vom: 15., Seite 469-79  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:57  |g year:2010  |g number:2  |g day:15  |g pages:469-79 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2010.1427  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2010  |e 2  |b 15  |h 469-79