Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness

Most naturally existing superhydrophobic surfaces have a dual roughness structure where the entire microtextured area is covered with nanoscale roughness. Despite numerous studies aiming to mimic the biological surfaces, there is a lack of understanding of the role of the nanostructure covering the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 11 vom: 01. Juni, Seite 8319-26
1. Verfasser: Cha, Tae-Gon (VerfasserIn)
Weitere Verfasser: Yi, Jin Woo, Moon, Myoung-Woon, Lee, Kwang-Ryeol, Kim, Ho-Young
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Most naturally existing superhydrophobic surfaces have a dual roughness structure where the entire microtextured area is covered with nanoscale roughness. Despite numerous studies aiming to mimic the biological surfaces, there is a lack of understanding of the role of the nanostructure covering the entire surface. Here we measure and compare the nonwetting behavior of microscopically rough surfaces by changing the coverage of nanoroughness imposed on them. We test the surfaces covered with micropillars, with nanopillars, with partially dual roughness (where micropillar tops are decorated with nanopillars), and with entirely dual roughness and a real lotus leaf surface. It is found that the superhydrophobic robustness of the surface with entirely dual roughness, with respect to the increased liquid pressure caused by the drop evaporation and with respect to the sagging of the liquid meniscus due to increased micropillar spacing, is greatly enhanced compared to that of other surfaces. This is attributed to the nanoroughness on the pillar bases that keeps the bottom surface highly water-repellent. In particular, when a drop sits on the entirely dual surface with a very low micropillar density, the dramatic loss of hydrophobicity is prevented because a novel wetting state is achieved where the drop wets the micropillars while supported by the tips of the basal nanopillars
Beschreibung:Date Completed 08.09.2010
Date Revised 26.05.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la9047402