Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media
Polypyrrole-palladium (PPy-Pd) nanocomposite was deposited in situ from aqueous solution onto micrometer-sized polystyrene (PS) latex particles. The PS seed particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, sur...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 26(2010), 9 vom: 04. Mai, Seite 6230-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Latex Polymers Polystyrenes Pyrroles Water 059QF0KO0R polypyrrole 30604-81-0 mehr... |
Zusammenfassung: | Polypyrrole-palladium (PPy-Pd) nanocomposite was deposited in situ from aqueous solution onto micrometer-sized polystyrene (PS) latex particles. The PS seed particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. PPy-Pd nanocomposite loading onto the PS seed latex particles was systematically controlled over a wide range (10-60 wt %) by changing the weight ratio of the PS latex and PPy-Pd nanocomposite. Pd loading was also controlled between 6 and 33 wt %. The conductivity of pressed pellets increased with the PPy-Pd nanocomposite loading and four-point probe measurements indicated conductivities ranging from 3.0 x 10(-1) to 7.9 x 10(-6) S cm(-1). Hollow capsule and broken egg-shell morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed that the production of elemental Pd and X-ray photoelectron spectroscopy indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. The nanocomposite particles functioned as an efficient catalyst for Suzuki-type coupling reactions in aqueous media for the formation of carbon-carbon bonds |
---|---|
Beschreibung: | Date Completed 02.08.2010 Date Revised 19.11.2015 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la9039545 |