Role of hydroxyl groups in the NH(x) (x = 1-3) adsorption on the TiO2 anatase (101) surface determined by a first-principles study

A spin-polarized density functional theory calculation was carried out to study the adsorption of NH(x) species (x = 1-3) on a TiO2 anatase (101) surface with and without hydroxyl groups by using first-principles calculations. It was found that the present hydroxyl group has the effect of significan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 7 vom: 06. Apr., Seite 4813-21
1. Verfasser: Chang, Jee-Gong (VerfasserIn)
Weitere Verfasser: Chen, Hsin-Tsung, Ju, Shin-Pon, Chen, Hui-Lung, Hwang, Chi-Chuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A spin-polarized density functional theory calculation was carried out to study the adsorption of NH(x) species (x = 1-3) on a TiO2 anatase (101) surface with and without hydroxyl groups by using first-principles calculations. It was found that the present hydroxyl group has the effect of significantly enhancing the adsorption of monodentate adsorbates H2N-Ti(a) compared to that on a bare surface. The nature of the interaction between the adsorbate (NH(x)) and the hydroxylated or bare surface was analyzed by the Mulliken charge and density of states (DOS) calculations. This facilitation of NH2 is caused by the donation of coadsorbed H filling the nonbonding orbital of NH2, resulting in an electron gain in NH2 from the bonding. In addition, the upper valence band, which originally consisted of the mixing of O 2p and Ti 3d orbitals, has been broadened by the two adjacent H 1s and NH2 sigma(y)(b) orbitals joined to the bottom of the original TiO2 valence band. The results are important to understand the OH effect in heterogeneous catalysis
Beschreibung:Date Completed 21.06.2010
Date Revised 30.03.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la903586u