|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM194708691 |
003 |
DE-627 |
005 |
20231223201255.0 |
007 |
tu |
008 |
231223s2010 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0649.xml
|
035 |
|
|
|a (DE-627)NLM194708691
|
035 |
|
|
|a (NLM)20112540
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, MinGu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Comparative performance of A2/O and a novel membrane-bioreactor-based process for biological nitrogen and phosphorus removal
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.02.2010
|
500 |
|
|
|a Date Revised 23.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The comparison between a novel membrane bioreactor (MBR) system and a conventional anaerobic-anoxic-aerobic (A2/O) system was conducted using synthetic wastewater (SWW) and municipal wastewater (MWW). Each system was operated at an overall hydraulic retention time of 8 hours and solids retention time of 10 days. The MBR exhibited better overall system performance than the A2/O system, in terms of phosphorus removal. Nitrogen removal efficiencies were close in the two systems at 73 to 74% in both runs, while phosphorus removal efficiencies were 96 and 74% (SWW run) and 80 and 75% (MWW run), for the MBR and A2/O, respectively. Effluent soluble chemical oxygen demand (COD) was less than 15 mg/L in the two systems during both runs. Phosphorus uptake by denitrifying phosphate-accumulating organisms accounted for 49% of the total uptake in the MBR compared with 33% in the A2/O during the SWW run. The dynamic test clearly showed that the MBR had better denitrification capacity than the A2/O system. The MWW run indicated that MBR ferments particulate COD better than A2/ O. The effect of the intermediate clarifier on MBR phosphorus removal was significant, with phosphorus uptake of 0.16 g/d in the SWW run and phosphorus release of 0.08 g/d in the MWW run, thus enhancing thetotal phosphorus removal in both cases
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Nakhla, George
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 82(2010), 1 vom: 16. Jan., Seite 69-76
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnns
|
773 |
1 |
8 |
|g volume:82
|g year:2010
|g number:1
|g day:16
|g month:01
|g pages:69-76
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 82
|j 2010
|e 1
|b 16
|c 01
|h 69-76
|