Robust classifiers for data reduced via random projections

The computational cost for most classification algorithms is dependent on the dimensionality of the input samples. As the dimensionality could be high in many cases, particularly those associated with image classification, reducing the dimensionality of the data becomes a necessity. The traditional...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 40(2010), 5 vom: 15. Okt., Seite 1359-71
1. Verfasser: Majumdar, Angshul (VerfasserIn)
Weitere Verfasser: Ward, Rabab K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM194654915
003 DE-627
005 20250211054311.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2009.2038493  |2 doi 
028 5 2 |a pubmed25n0649.xml 
035 |a (DE-627)NLM194654915 
035 |a (NLM)20106743 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Majumdar, Angshul  |e verfasserin  |4 aut 
245 1 0 |a Robust classifiers for data reduced via random projections 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2011 
500 |a Date Revised 15.09.2010 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The computational cost for most classification algorithms is dependent on the dimensionality of the input samples. As the dimensionality could be high in many cases, particularly those associated with image classification, reducing the dimensionality of the data becomes a necessity. The traditional dimensionality reduction methods are data dependent, which poses certain practical problems. Random projection (RP) is an alternative dimensionality reduction method that is data independent and bypasses these problems. The nearest neighbor classifier has been used with the RP method in classification problems. To obtain higher recognition accuracy, this study looks at the robustness of RP dimensionality reduction for several recently proposed classifiers--sparse classifier (SC), group SC (along with their fast versions), and the nearest subspace classifier. Theoretical proofs are offered regarding the robustness of these classifiers to RP. The theoretical results are confirmed by experimental evaluations 
650 4 |a Journal Article 
700 1 |a Ward, Rabab K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 40(2010), 5 vom: 15. Okt., Seite 1359-71  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:40  |g year:2010  |g number:5  |g day:15  |g month:10  |g pages:1359-71 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2009.2038493  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2010  |e 5  |b 15  |c 10  |h 1359-71