Texture classification using refined histogram

In this correspondence, we propose a novel, efficient, and effective Refined Histogram (RH) for modeling the wavelet subband detail coefficients and present a new image signature based on the RH model for supervised texture classification. Our RH makes use of a step function with exponentially incre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 5 vom: 15. Mai, Seite 1371-8
1. Verfasser: Li, L (VerfasserIn)
Weitere Verfasser: Tong, C S, Choy, S K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM194654842
003 DE-627
005 20231223201153.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2041414  |2 doi 
028 5 2 |a pubmed24n0649.xml 
035 |a (DE-627)NLM194654842 
035 |a (NLM)20106736 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, L  |e verfasserin  |4 aut 
245 1 0 |a Texture classification using refined histogram 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 23.07.2010 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this correspondence, we propose a novel, efficient, and effective Refined Histogram (RH) for modeling the wavelet subband detail coefficients and present a new image signature based on the RH model for supervised texture classification. Our RH makes use of a step function with exponentially increasing intervals to model the histogram of detail coefficients, and the concatenation of the RH model parameters for all wavelet subbands forms the so-called RH signature. To justify the usefulness of the RH signature, we discuss and investigate some of its statistical properties. These properties would clarify the sufficiency of the signature to characterize the wavelet subband information. In addition, we shall also present an efficient RH signature extraction algorithm based on the coefficient-counting technique, which helps to speed up the overall classification system performance. We apply the RH signature to texture classification using the well-known databases. Experimental results show that our proposed RH signature in conjunction with the use of symmetrized Kullback-Leibler divergence gives a satisfactory classification performance compared with the current state-of-the-art methods 
650 4 |a Letter 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tong, C S  |e verfasserin  |4 aut 
700 1 |a Choy, S K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 5 vom: 15. Mai, Seite 1371-8  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:5  |g day:15  |g month:05  |g pages:1371-8 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2041414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 5  |b 15  |c 05  |h 1371-8