Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules : from quantum mechanics to molecular simulation

MIL-101 is a chromium terephthalate-based mesoscopic metal-organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO(2) and CH(4) in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 11 vom: 01. Juni, Seite 8743-50
1. Verfasser: Chen, Y F (VerfasserIn)
Weitere Verfasser: Babarao, R, Sandler, S I, Jiang, J W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM194619915
003 DE-627
005 20231223201111.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1021/la904502h  |2 doi 
028 5 2 |a pubmed24n0649.xml 
035 |a (DE-627)NLM194619915 
035 |a (NLM)20102235 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Y F  |e verfasserin  |4 aut 
245 1 0 |a Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules  |b from quantum mechanics to molecular simulation 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.09.2010 
500 |a Date Revised 25.05.2010 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a MIL-101 is a chromium terephthalate-based mesoscopic metal-organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO(2) and CH(4) in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic structures of MIL-101 are constructed from experimental crystallographic data, energy minimization, and quantum mechanical optimization. The adsorption isotherm of CO(2) predicted from molecular simulation agrees well with experiment and is relatively insensitive to the method (Merz-Kollman or Mulliken) used to estimate the framework charges. Both the united-atom and five-site models of CH(4) predict the isotherm fairly well, though the former overestimates and the latter underestimates. Adsorption first occurs in the microporous supertetrahedra at low pressures and then in the mesoscopic cages with increasing pressure. In the dehydrated MIL-101, more adsorbate molecules are located near the exposed Cr(2) sites than the fluorine saturated Cr(1) sites. The terminal water molecules in the hydrated MIL-101 act as additional interaction sites and enhance adsorption at low pressures. This enhancement is more pronounced for CO(2) than for CH(4), because CO(2) is quadrapolar and interacts more strongly with the terminal water molecules. At high pressures, however, the reverse is observed, as the presence of terminal water molecules reduces free volume and adsorption. For the adsorption of CO(2)/CH(4) mixture, a higher selectivity is found in the hydrated MIL-101 
650 4 |a Journal Article 
700 1 |a Babarao, R  |e verfasserin  |4 aut 
700 1 |a Sandler, S I  |e verfasserin  |4 aut 
700 1 |a Jiang, J W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 26(2010), 11 vom: 01. Juni, Seite 8743-50  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:26  |g year:2010  |g number:11  |g day:01  |g month:06  |g pages:8743-50 
856 4 0 |u http://dx.doi.org/10.1021/la904502h  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 26  |j 2010  |e 11  |b 01  |c 06  |h 8743-50