Calorimetric study of the adsorption of poly(ethylene oxide) and poly(vinyl pyrrolidone) onto cationic nanoparticles

The adsorption of two polymers, poly(ethylene oxide) (PEO) and poly(vinyl pyrrolidone) PVP, onto cationic nanoparticles suspended in both water and a buffer solution is studied via isothermal titration calorimetry (ITC). These are model systems studied previously to understand polymer-induced phase...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 9 vom: 04. Mai, Seite 6262-7
1. Verfasser: McFarlane, Naa Larteokor (VerfasserIn)
Weitere Verfasser: Wagner, Norman J, Kaler, Eric W, Lynch, Matthew L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The adsorption of two polymers, poly(ethylene oxide) (PEO) and poly(vinyl pyrrolidone) PVP, onto cationic nanoparticles suspended in both water and a buffer solution is studied via isothermal titration calorimetry (ITC). These are model systems studied previously to understand polymer-induced phase separation and bridging flocculation in the protein limit. ITC measurements provide critical information for rationalizing the effects of polymer type and added buffer solution on the loss of stability of nanoparticle-polymer solutions. For PEO, weak segmental adsorption energies of approximately 0.2k(B)T for PEO in water and buffer are consistent with depletion phase separation. For PVP in water, segmental adsorption energies on the order of approximately 1.6k(B)T support the observed bridging flocculation, whereas a weaker adsorption energy of approximately 0.7k(B)T for PVP in buffer is consistent with depletion phase separation. Multilayer adsorption is observed in buffer solutions, which corroborates a measured increase in the hydrodynamic size of the polymer-nanoparticle complexes with added buffer. The entropy of adsorption is calculated from equilibrium constants determined by combining ITC and adsorption isotherms
Beschreibung:Date Completed 02.08.2010
Date Revised 27.04.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la904046g