A robust fuzzy local information C-Means clustering algorithm

This paper presents a variation of fuzzy c-means (FCM) algorithm that provides image clustering. The proposed algorithm incorporates the local spatial information and gray level information in a novel fuzzy way. The new algorithm is called fuzzy local information C-Means (FLICM). FLICM can overcome...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 5 vom: 02. Mai, Seite 1328-37
1. Verfasser: Krinidis, Stelios (VerfasserIn)
Weitere Verfasser: Chatzis, Vassilios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM194499367
003 DE-627
005 20231223200843.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2040763  |2 doi 
028 5 2 |a pubmed24n0648.xml 
035 |a (DE-627)NLM194499367 
035 |a (NLM)20089475 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Krinidis, Stelios  |e verfasserin  |4 aut 
245 1 2 |a A robust fuzzy local information C-Means clustering algorithm 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 11.03.2013 
500 |a published: Print-Electronic 
500 |a CommentIn: IEEE Trans Image Process. 2013 Mar;22(3):1258-61. - PMID 23144036 
500 |a Citation Status MEDLINE 
520 |a This paper presents a variation of fuzzy c-means (FCM) algorithm that provides image clustering. The proposed algorithm incorporates the local spatial information and gray level information in a novel fuzzy way. The new algorithm is called fuzzy local information C-Means (FLICM). FLICM can overcome the disadvantages of the known fuzzy c-means algorithms and at the same time enhances the clustering performance. The major characteristic of FLICM is the use of a fuzzy local (both spatial and gray level) similarity measure, aiming to guarantee noise insensitiveness and image detail preservation. Furthermore, the proposed algorithm is fully free of the empirically adjusted parameters (a, ¿(g), ¿(s), etc.) incorporated into all other fuzzy c-means algorithms proposed in the literature. Experiments performed on synthetic and real-world images show that FLICM algorithm is effective and efficient, providing robustness to noisy images 
650 4 |a Journal Article 
700 1 |a Chatzis, Vassilios  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 5 vom: 02. Mai, Seite 1328-37  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:5  |g day:02  |g month:05  |g pages:1328-37 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2040763  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 5  |b 02  |c 05  |h 1328-37