Meshless helmholtz-hodge decomposition

Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decompo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 16(2010), 2 vom: 15. März, Seite 338-49
Auteur principal: Petronetto, Fabiano (Auteur)
Autres auteurs: Paiva, Afonso, Lage, Marcos, Tavares, Geovan, Lopes, Hélio, Lewiner, Thomas
Format: Article en ligne
Langue:English
Publié: 2010
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
Description
Résumé:Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility
Description:Date Completed 02.04.2010
Date Revised 01.04.2013
published: Print
CommentIn: IEEE Trans Vis Comput Graph. 2013 Mar;19(3):527-8. doi: 10.1109/TVCG.2012.62. - PMID 22350202
Citation Status MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2009.61