Origamizing polyhedral surfaces

This paper presents the first practical method for "origamizing" or obtaining the folding pattern that folds a single sheet of material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape. The main contribution is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 16(2010), 2 vom: 15. März, Seite 298-311
1. Verfasser: Tachi, Tomohiro (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM194366901
003 DE-627
005 20231223200605.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2009.67  |2 doi 
028 5 2 |a pubmed24n0648.xml 
035 |a (DE-627)NLM194366901 
035 |a (NLM)20075489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tachi, Tomohiro  |e verfasserin  |4 aut 
245 1 0 |a Origamizing polyhedral surfaces 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.04.2010 
500 |a Date Revised 15.01.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents the first practical method for "origamizing" or obtaining the folding pattern that folds a single sheet of material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape. The main contribution is to solve the inverse problem; the input is an arbitrary polyhedral surface and the output is the folding pattern. Our approach is to convert this problem into a problem of laying out the polygons of the surface on a planar paper by introducing the concept of tucking molecules. We investigate the equality and inequality conditions required for constructing a valid crease pattern. We propose an algorithm based on two-step mapping and edge splitting to solve these conditions. The two-step mapping precalculates linear equalities and separates them from other conditions. This allows an interactive manipulation of the crease pattern in the system implementation. We present the first system for designing three-dimensional origami, enabling a user can interactively design complex spatial origami models that have not been realizable thus far 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 16(2010), 2 vom: 15. März, Seite 298-311  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:16  |g year:2010  |g number:2  |g day:15  |g month:03  |g pages:298-311 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2009.67  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2010  |e 2  |b 15  |c 03  |h 298-311