Document ink bleed-through removal with two hidden Markov random fields and a single observation field
We present a new method for blind document bleed-through removal based on separate Markov Random Field (MRF) regularization for the recto and for the verso side, where separate priors are derived from the full graph. The segmentation algorithm is based on Bayesian Maximum a Posteriori (MAP) estimati...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 3 vom: 15. März, Seite 431-47 |
---|---|
1. Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | We present a new method for blind document bleed-through removal based on separate Markov Random Field (MRF) regularization for the recto and for the verso side, where separate priors are derived from the full graph. The segmentation algorithm is based on Bayesian Maximum a Posteriori (MAP) estimation. The advantages of this separate approach are the adaptation of the prior to the contents creation process (e.g., superimposing two handwritten pages), and the improvement of the estimation of the recto pixels through an estimation of the verso pixels covered by recto pixels; moreover, the formulation as a binary labeling problem with two hidden labels per pixels naturally leads to an efficient optimization method based on the minimum cut/maximum flow in a graph. The proposed method is evaluated on scanned document images from the 18th century, showing an improvement of character recognition results compared to other restoration methods |
---|---|
Beschreibung: | Date Completed 10.03.2010 Date Revised 15.01.2010 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2009.33 |