Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA
A new formulation for multiway spectral clustering is proposed. This method corresponds to a weighted kernel principal component analysis (PCA) approach based on primal-dual least-squares support vector machine (LS-SVM) formulations. The formulation allows the extension to out-of-sample points. In t...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 2 vom: 15. Feb., Seite 335-47 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Online verfügbar |
Volltext |