|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM194366596 |
003 |
DE-627 |
005 |
20231223200605.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2008.293
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0648.xml
|
035 |
|
|
|a (DE-627)NLM194366596
|
035 |
|
|
|a (NLM)20075457
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tong, Yan
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A unified probabilistic framework for spontaneous facial action modeling and understanding
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.03.2010
|
500 |
|
|
|a Date Revised 15.01.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Facial expression is a natural and powerful means of human communication. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. Because of these challenges, current research in facial expression recognition is limited to posed expressions and often in frontal view. A spontaneous facial expression is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the coherent and consistent spatiotemporal interactions among rigid and nonrigid facial motions that produce a meaningful facial expression. Recognizing this fact, we introduce a unified probabilistic facial action model based on the Dynamic Bayesian network (DBN) to simultaneously and coherently represent rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, facial action recognition is accomplished through probabilistic inference by systematically integrating visual measurements with the facial action model. Experiments show that compared to the state-of-the-art techniques, the proposed system yields significant improvements in recognizing both rigid and nonrigid facial motions, especially for spontaneous facial expressions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Chen, Jixu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ji, Qiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 32(2010), 2 vom: 15. Feb., Seite 258-73
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2010
|g number:2
|g day:15
|g month:02
|g pages:258-73
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2008.293
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2010
|e 2
|b 15
|c 02
|h 258-73
|