A unified probabilistic framework for spontaneous facial action modeling and understanding

Facial expression is a natural and powerful means of human communication. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. Because of these challenges, current resea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 2 vom: 15. Feb., Seite 258-73
1. Verfasser: Tong, Yan (VerfasserIn)
Weitere Verfasser: Chen, Jixu, Ji, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM194366596
003 DE-627
005 20231223200605.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.293  |2 doi 
028 5 2 |a pubmed24n0648.xml 
035 |a (DE-627)NLM194366596 
035 |a (NLM)20075457 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tong, Yan  |e verfasserin  |4 aut 
245 1 2 |a A unified probabilistic framework for spontaneous facial action modeling and understanding 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.03.2010 
500 |a Date Revised 15.01.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Facial expression is a natural and powerful means of human communication. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. Because of these challenges, current research in facial expression recognition is limited to posed expressions and often in frontal view. A spontaneous facial expression is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the coherent and consistent spatiotemporal interactions among rigid and nonrigid facial motions that produce a meaningful facial expression. Recognizing this fact, we introduce a unified probabilistic facial action model based on the Dynamic Bayesian network (DBN) to simultaneously and coherently represent rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, facial action recognition is accomplished through probabilistic inference by systematically integrating visual measurements with the facial action model. Experiments show that compared to the state-of-the-art techniques, the proposed system yields significant improvements in recognizing both rigid and nonrigid facial motions, especially for spontaneous facial expressions 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Chen, Jixu  |e verfasserin  |4 aut 
700 1 |a Ji, Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 2 vom: 15. Feb., Seite 258-73  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:2  |g day:15  |g month:02  |g pages:258-73 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.293  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 2  |b 15  |c 02  |h 258-73