Interpolation of steady-state concentration data by inverse modeling

In most groundwater applications, measurements of concentration are limited in number and sparsely distributed within the domain of interest. Therefore, interpolation techniques are needed to obtain most likely values of concentration at locations where no measurements are available. For further pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1998. - 48(2010), 4 vom: 01. Juli, Seite 569-79
1. Verfasser: Schwede, Ronnie L (VerfasserIn)
Weitere Verfasser: Cirpka, Olaf A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Validation Study
LEADER 01000caa a22002652 4500
001 NLM194322165
003 DE-627
005 20250211050017.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1745-6584.2009.00668.x  |2 doi 
028 5 2 |a pubmed25n0648.xml 
035 |a (DE-627)NLM194322165 
035 |a (NLM)20070381 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schwede, Ronnie L  |e verfasserin  |4 aut 
245 1 0 |a Interpolation of steady-state concentration data by inverse modeling 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.11.2010 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In most groundwater applications, measurements of concentration are limited in number and sparsely distributed within the domain of interest. Therefore, interpolation techniques are needed to obtain most likely values of concentration at locations where no measurements are available. For further processing, for example, in environmental risk analysis, interpolated values should be given with uncertainty bounds, so that a geostatistical framework is preferable. Linear interpolation of steady-state concentration measurements is problematic because the dependence of concentration on the primary uncertain material property, the hydraulic conductivity field, is highly nonlinear, suggesting that the statistical interrelationship between concentration values at different points is also nonlinear. We suggest interpolating steady-state concentration measurements by conditioning an ensemble of the underlying log-conductivity field on the available hydrological data in a conditional Monte Carlo approach. Flow and transport simulations for each conditional conductivity field must meet the measurements within their given uncertainty. The ensemble of transport simulations based on the conditional log-conductivity fields yields conditional statistical distributions of concentration at points between observation points. This method implicitly meets physical bounds of concentration values and non-Gaussianity of their statistical distributions and obeys the nonlinearity of the underlying processes. We validate our method by artificial test cases and compare the results to kriging estimates assuming different conditional statistical distributions of concentration. Assuming a beta distribution in kriging leads to estimates of concentration with zero probability of concentrations below zero or above the maximal possible value; however, the concentrations are not forced to meet the advection-dispersion equation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Validation Study 
700 1 |a Cirpka, Olaf A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1998  |g 48(2010), 4 vom: 01. Juli, Seite 569-79  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnns 
773 1 8 |g volume:48  |g year:2010  |g number:4  |g day:01  |g month:07  |g pages:569-79 
856 4 0 |u http://dx.doi.org/10.1111/j.1745-6584.2009.00668.x  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2010  |e 4  |b 01  |c 07  |h 569-79