Assessment of linear finite-difference Poisson-Boltzmann solvers

Copyright 2010 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 31(2010), 8 vom: 09. Juni, Seite 1689-98
1. Verfasser: Wang, Jun (VerfasserIn)
Weitere Verfasser: Luo, Ray
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Extramural Proteins Solutions
LEADER 01000naa a22002652 4500
001 NLM194255115
003 DE-627
005 20231223200345.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21456  |2 doi 
028 5 2 |a pubmed24n0648.xml 
035 |a (DE-627)NLM194255115 
035 |a (NLM)20063271 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jun  |e verfasserin  |4 aut 
245 1 0 |a Assessment of linear finite-difference Poisson-Boltzmann solvers 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.07.2010 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2010 Wiley Periodicals, Inc. 
520 |a CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study, we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 7 |a Proteins  |2 NLM 
650 7 |a Solutions  |2 NLM 
700 1 |a Luo, Ray  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 31(2010), 8 vom: 09. Juni, Seite 1689-98  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:31  |g year:2010  |g number:8  |g day:09  |g month:06  |g pages:1689-98 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21456  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2010  |e 8  |b 09  |c 06  |h 1689-98