Controlled flats on spherical polymer colloids
Colloidal particles with heterogeneous surfaces offer rich possibilities for controlled self-assembly. We have developed a method for preparing micrometer-sized polystyrene spheres with circular flat spots of controlled radius and location. The flats are created by settling the particles onto a flat...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 10 vom: 18. Mai, Seite 7644-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Colloids Polystyrenes |
Zusammenfassung: | Colloidal particles with heterogeneous surfaces offer rich possibilities for controlled self-assembly. We have developed a method for preparing micrometer-sized polystyrene spheres with circular flat spots of controlled radius and location. The flats are created by settling the particles onto a flat glass substrate and then raising the temperature above the glass-transition temperature of the polymer for a controlled time (t). The polymer particle spreads on the glass such that the radius of the flat grows with time. We present a scaling theory for the hydrodynamics of the flattening process, finding that the radius of the flat grows as t(1/3). The model is in good agreement with our experimental observations of the flat radius versus spreading time as well as with previous studies in the literature for sintering polymer spheres |
---|---|
Beschreibung: | Date Completed 17.08.2010 Date Revised 12.05.2010 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la904165w |