Object recognition through topo-geometric shape models using error-tolerant subgraph isomorphisms

We propose a method for 3-D shape recognition based on inexact subgraph isomorphisms, by extracting topological and geometric properties of a shape in the form of a shape model, referred to as topo-geometric shape model (TGSM). In a nutshell, TGSM captures topological information through a rigid tra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 5 vom: 19. Mai, Seite 1191-200
1. Verfasser: Baloch, Sajjad (VerfasserIn)
Weitere Verfasser: Krim, Hamid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM194038092
003 DE-627
005 20231223195912.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2039372  |2 doi 
028 5 2 |a pubmed24n0647.xml 
035 |a (DE-627)NLM194038092 
035 |a (NLM)20040418 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Baloch, Sajjad  |e verfasserin  |4 aut 
245 1 0 |a Object recognition through topo-geometric shape models using error-tolerant subgraph isomorphisms 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 23.07.2010 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose a method for 3-D shape recognition based on inexact subgraph isomorphisms, by extracting topological and geometric properties of a shape in the form of a shape model, referred to as topo-geometric shape model (TGSM). In a nutshell, TGSM captures topological information through a rigid transformation invariant skeletal graph that is constructed in a Morse theoretic framework with distance function as the Morse function. Geometric information is then retained by analyzing the geometric profile as viewed through the distance function. Modeling the geometric profile through elastic yields a weighted skeletal representation, which leads to a complete shape signature. Shape recognition is carried out through inexact subgraph isomorphisms by determining a sequence of graph edit operations on model graphs to establish subgraph isomorphisms with a test graph. Test graph is recognized as a shape that yields the largest subgraph isomorphism with minimal cost of edit operations. In this paper, we propose various cost assignments for graph edit operations for error correction that takes into account any shape variations arising from noise and measurement errors 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Krim, Hamid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 5 vom: 19. Mai, Seite 1191-200  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:5  |g day:19  |g month:05  |g pages:1191-200 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2039372  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 5  |b 19  |c 05  |h 1191-200