Microconfined shear deformation of a droplet in an equiviscous non-newtonian immiscible fluid : experiments and modeling
In this work, the microconfined shear deformation of a droplet in an equiviscous non-Newtonian immiscible fluid is investigated by modeling and experiments. A phenomenological model based on the assumption of ellipsoidal shape and taking into account wall effects is proposed for systems made of non-...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 1 vom: 05. Jan., Seite 126-32 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | In this work, the microconfined shear deformation of a droplet in an equiviscous non-Newtonian immiscible fluid is investigated by modeling and experiments. A phenomenological model based on the assumption of ellipsoidal shape and taking into account wall effects is proposed for systems made of non-Newtonian second-order fluids. The model, without any adjustable parameters, is tested by comparison with experiments under simple shear flow performed in a sliding plate apparatus, where the ratio between the distance between the confining walls and the droplet radius can be varied. The agreement between model predictions and experimental data is good both in steady state shear and in transient drop retraction upon cessation of flow. The results obtained in this work are relevant for microfluidics applications where non-Newtonian fluids are used |
---|---|
Beschreibung: | Date Completed 02.03.2010 Date Revised 29.12.2009 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la902187a |