Projective nonnegative graph embedding

We present in this paper a general formulation for nonnegative data factorization, called projective nonnegative graph embedding (PNGE), which 1) explicitly decomposes the data into two nonnegative components favoring the characteristics encoded by the so-called intrinsic and penalty graphs , respec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 5 vom: 04. Mai, Seite 1126-37
1. Verfasser: Liu, Xiaobai (VerfasserIn)
Weitere Verfasser: Yan, Shuicheng, Jin, Hai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM193954648
003 DE-627
005 20231223195735.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2039050  |2 doi 
028 5 2 |a pubmed24n0647.xml 
035 |a (DE-627)NLM193954648 
035 |a (NLM)20031496 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
245 1 0 |a Projective nonnegative graph embedding 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.11.2010 
500 |a Date Revised 23.07.2010 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We present in this paper a general formulation for nonnegative data factorization, called projective nonnegative graph embedding (PNGE), which 1) explicitly decomposes the data into two nonnegative components favoring the characteristics encoded by the so-called intrinsic and penalty graphs , respectively, and 2) explicitly describes how to transform each new testing sample into its low-dimensional nonnegative representation. In the past, such a nonnegative decomposition was often obtained for the training samples only, e.g., nonnegative matrix factorization (NMF) and its variants, nonnegative graph embedding (NGE) and its refined version multiplicative nonnegative graph embedding (MNGE). Those conventional approaches for out-of-sample extension either suffer from the high computational cost or violate the basic nonnegative assumption. In this work, PNGE offers a unified solution to out-of-sample extension problem, and the nonnegative coefficient vector of each datum is assumed to be projected from its original feature representation with a universal nonnegative transformation matrix. A convergency provable multiplicative nonnegative updating rule is then derived to learn the basis matrix and transformation matrix. Extensive experiments compared with the state-of-the-art algorithms on nonnegative data factorization demonstrate the algorithmic properties in convergency, sparsity, and classification power 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Jin, Hai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 5 vom: 04. Mai, Seite 1126-37  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:5  |g day:04  |g month:05  |g pages:1126-37 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2039050  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 5  |b 04  |c 05  |h 1126-37