Time-resolved loading of monomers into bilayers with different curvature

Directed assembly of nanostructures within temporary and recyclable self-assembled scaffolds is emerging as an attractive method for the synthesis of nanomaterials with programmed properties. Understanding interactions of building blocks with amphiphilic scaffolds is critical for rational design of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 9 vom: 04. Mai, Seite 6276-80
1. Verfasser: Dergunov, Sergey A (VerfasserIn)
Weitere Verfasser: Schaub, Samuel C, Richter, Andrew, Pinkhassik, Eugene
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Lipid Bilayers Liposomes Benzene J64922108F Dimyristoylphosphatidylcholine U86ZGC74V5
Beschreibung
Zusammenfassung:Directed assembly of nanostructures within temporary and recyclable self-assembled scaffolds is emerging as an attractive method for the synthesis of nanomaterials with programmed properties. Understanding interactions of building blocks with amphiphilic scaffolds is critical for rational design of new nanostructures and nanodevices. Here we examine loading of hydrophobic monomers into bilayers with different curvatures. Time-resolved loading was studied by high performance liquid chromatography and dynamic light scattering. Despite differences in initial bilayer geometry, loading rates and maximum bilayer capacity are the same for liposomes with radii ranging from 25 to 100 nm. When using divinylbenzene (DVB) and dimyristoylphosphatidylcholine (DMPC), monomer/lipid loading ratio of 1.2 was achieved within 12 h. While accommodation of a large amount of monomers is likely to be accompanied with significant changes in bilayer structure, all liposomes in this study including those with smallest size and higher bilayer curvature retain encapsulated content and show no evidence of fusion during monomer loading. These results contribute to our understanding of interactions between hydrophobic molecules and lipid bilayers and expand the scope of the directed assembly method
Beschreibung:Date Completed 02.08.2010
Date Revised 20.10.2021
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la904054f