Simultaneous object classification and segmentation with high-order multiple shape models

Shape models (SMs), capturing the common features of a set of training shapes, represent a new incoming object based on its projection onto the corresponding model. Given a set of learned SMs representing different objects classes, and an image with a new shape, this work introduces a joint classifi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 3 vom: 23. März, Seite 625-35
1. Verfasser: Lecumberry, Federico (VerfasserIn)
Weitere Verfasser: Pardo, Alvaro, Sapiro, Guillermo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM193927756
003 DE-627
005 20231223195700.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2038759  |2 doi 
028 5 2 |a pubmed24n0646.xml 
035 |a (DE-627)NLM193927756 
035 |a (NLM)20028636 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lecumberry, Federico  |e verfasserin  |4 aut 
245 1 0 |a Simultaneous object classification and segmentation with high-order multiple shape models 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.05.2010 
500 |a Date Revised 22.02.2010 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Shape models (SMs), capturing the common features of a set of training shapes, represent a new incoming object based on its projection onto the corresponding model. Given a set of learned SMs representing different objects classes, and an image with a new shape, this work introduces a joint classification-segmentation framework with a twofold goal. First, to automatically select the SM that best represents the object, and second, to accurately segment the image taking into account both the image information and the features and variations learned from the online selected model. A new energy functional is introduced that simultaneously accomplishes both goals. Model selection is performed based on a shape similarity measure, online determining which model to use at each iteration of the steepest descent minimization, allowing for model switching and adaptation to the data. High-order SMs are used in order to deal with very similar object classes and natural variability within them. Position and transformation invariance is included as part of the modeling as well. The presentation of the framework is complemented with examples for the difficult task of simultaneously classifying and segmenting closely related shapes, such as stages of human activities, in images with severe occlusions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Pardo, Alvaro  |e verfasserin  |4 aut 
700 1 |a Sapiro, Guillermo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 3 vom: 23. März, Seite 625-35  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:3  |g day:23  |g month:03  |g pages:625-35 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2038759  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 3  |b 23  |c 03  |h 625-35