|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM193796694 |
003 |
DE-627 |
005 |
20231223195429.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la902879h
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0646.xml
|
035 |
|
|
|a (DE-627)NLM193796694
|
035 |
|
|
|a (NLM)20014804
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Irwin, Michael D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Consequences of anode interfacial layer deletion. HCl-treated ITO in P3HT:PCBM-based bulk-heterojunction organic photovoltaic devices
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.04.2010
|
500 |
|
|
|a Date Revised 09.02.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In studies to simplify the fabrication of bulk-heterojunction organic photovoltaic (OPV) devices, it was found that when glass/tin-doped indium oxide (ITO) substrates are treated with dilute aqueous HCl solutions, followed by UV ozone (UVO), and then used to fabricate devices of the structure glass/ITO/P3HT:PCBM/LiF/Al, device performance is greatly enhanced. Light-to-power conversion efficiency (Eff) increases from 2.4% for control devices in which the ITO surface is treated only with UVO to 3.8% with the HCl + UVO treatment--effectively matching the performance of an identical device having a PEDOT:PSS anode interfacial layer. The enhancement originates from increases in V(OC) from 463 to 554 mV and FF from 49% to 66%. The modified-ITO device also exhibits a 4x enhancement in thermal stability versus an identical device containing a PEDOT:PSS anode interfacial layer. To understand the origins of these effects, the ITO surface is analyzed as a function of treatment by ultraviolet photoelectron spectroscopy work function measurements, X-ray photoelectron spectroscopic composition analysis, and atomic force microscopic topography and conductivity imaging. Additionally, a diode-based device model is employed to further understand the effects of ITO surface treatment on device performance
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leever, Benjamin J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Servaites, Jonathan D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hersam, Mark C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Durstock, Michael F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marks, Tobin J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 26(2010), 4 vom: 16. Feb., Seite 2584-91
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:4
|g day:16
|g month:02
|g pages:2584-91
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la902879h
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 4
|b 16
|c 02
|h 2584-91
|