Monocular 3-D tracking of inextensible deformable surfaces under L(2) -norm

We present a method for recovering the 3-D shape of an inextensible deformable surface from a monocular image sequence. State-of-the-art methods on this problem , utilize L(infinity)-norm of reprojection residual vectors and formulate the tracking problem as a Second-Order Cone Programming (SOCP) pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 2 vom: 15. Feb., Seite 512-21
1. Verfasser: Shen, Shuhan (VerfasserIn)
Weitere Verfasser: Shi, Wenhuan, Liu, Yuncai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM193725363
003 DE-627
005 20231223195311.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2038115  |2 doi 
028 5 2 |a pubmed24n0646.xml 
035 |a (DE-627)NLM193725363 
035 |a (NLM)20007027 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Shuhan  |e verfasserin  |4 aut 
245 1 0 |a Monocular 3-D tracking of inextensible deformable surfaces under L(2) -norm 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2010 
500 |a Date Revised 19.01.2010 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a method for recovering the 3-D shape of an inextensible deformable surface from a monocular image sequence. State-of-the-art methods on this problem , utilize L(infinity)-norm of reprojection residual vectors and formulate the tracking problem as a Second-Order Cone Programming (SOCP) problem. Instead of using L(infinity) which is sensitive to outliers, we use L(2)-norm of reprojection errors. Generally, using L(2) leads a nonconvex optimization problem which is difficult to minimize. Instead of solving the nonconvex problem directly, we design an iterative L(2)-norm approximation process to approximate the nonconvex objective function, in which only a linear system needs to be solved at each iteration. Furthermore, we introduce a shape regularization term into this iterative process in order to keep the inextensibility of the recovered mesh. Compared with previous methods, ours performs more robust to image noises, outliers and large interframe motions with high computational efficiency. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shi, Wenhuan  |e verfasserin  |4 aut 
700 1 |a Liu, Yuncai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 2 vom: 15. Feb., Seite 512-21  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:2  |g day:15  |g month:02  |g pages:512-21 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2038115  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 2  |b 15  |c 02  |h 512-21