Extended mixed-culture biofilms (MCB) model to describe integrated fixed film/activated sludge (IFAS) process behaviour

This paper presents how, in a calibration process, different assumptions regarding the standard Mixed-Culture Biofilms (MCB) model were able to match the average results at a continuous Johannesburg pilot plant (comprising two aerobic reactors, AE1 and AE2), but failed to match the batch test result...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 60(2009), 12 vom: 15., Seite 3233-41
1. Verfasser: Albizuri, J (VerfasserIn)
Weitere Verfasser: van Loosdrecht, M C M, Larrea, L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Sewage
Beschreibung
Zusammenfassung:This paper presents how, in a calibration process, different assumptions regarding the standard Mixed-Culture Biofilms (MCB) model were able to match the average results at a continuous Johannesburg pilot plant (comprising two aerobic reactors, AE1 and AE2), but failed to match the batch test results of either the rate of endogenous carbonaceous oxygen uptake (OUR) or the rate of nitrate production (NPR). Under the first assumption, where attachment and diffusion of particulate components were not used, the OUR in the biofilm of the first aerobic reactor (AE1) was too low due to the absence of slowly biodegradable COD (X(S)) attachment flux. In a second assumption, where high diffusion and attachment coefficients were used, the NPR in the biofilm of the AE1 reactor exceeded the experimental value due to the high attachment flux used for nitrifiers (X(A)) and the low competition for space from X(S) and heterotrophic bacteria (X(H)). The only way to match all the experimental results was through the use of a higher attachment coefficient for X(S) in the first reactor (AE1), but this was considered unreasonable. Hence, an extended model was developed where a colloidal state, which interacts at the same time with the flocs and the biofilm through attachment-detachment processes, is distinguished. This model allowed the experimental results to be matched, but using the same value for the attachment coefficients of all particulate components
Beschreibung:Date Completed 04.03.2010
Date Revised 03.12.2009
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2009.612