On the decoding process in ternary error-correcting output codes

A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvem...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 1 vom: 20. Jan., Seite 120-34
1. Verfasser: Escalera, Sergio (VerfasserIn)
Weitere Verfasser: Pujol, Oriol, Radeva, Petia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM192953664
003 DE-627
005 20231223193909.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.266  |2 doi 
028 5 2 |a pubmed24n0643.xml 
035 |a (DE-627)NLM192953664 
035 |a (NLM)19926903 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Escalera, Sergio  |e verfasserin  |4 aut 
245 1 0 |a On the decoding process in ternary error-correcting output codes 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2010 
500 |a Date Revised 20.11.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pujol, Oriol  |e verfasserin  |4 aut 
700 1 |a Radeva, Petia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 1 vom: 20. Jan., Seite 120-34  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:1  |g day:20  |g month:01  |g pages:120-34 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.266  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 1  |b 20  |c 01  |h 120-34