Accurate image search using the contextual dissimilarity measure

This paper introduces the contextual dissimilarity measure, which significantly improves the accuracy of bag-of-features-based image search. Our measure takes into account the local distribution of the vectors and iteratively estimates distance update terms in the spirit of Sinkhorn's scaling a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 1 vom: 20. Jan., Seite 2-11
1. Verfasser: Jegou, Hervé (VerfasserIn)
Weitere Verfasser: Schmid, Cordelia, Harzallah, Hedi, Verbeek, Jakob
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM192953575
003 DE-627
005 20231223193909.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.285  |2 doi 
028 5 2 |a pubmed24n0643.xml 
035 |a (DE-627)NLM192953575 
035 |a (NLM)19926895 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jegou, Hervé  |e verfasserin  |4 aut 
245 1 0 |a Accurate image search using the contextual dissimilarity measure 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2010 
500 |a Date Revised 20.11.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces the contextual dissimilarity measure, which significantly improves the accuracy of bag-of-features-based image search. Our measure takes into account the local distribution of the vectors and iteratively estimates distance update terms in the spirit of Sinkhorn's scaling algorithm, thereby modifying the neighborhood structure. Experimental results show that our approach gives significantly better results than a standard distance and outperforms the state of the art in terms of accuracy on the Nistér-Stewénius and Lola data sets. This paper also evaluates the impact of a large number of parameters, including the number of descriptors, the clustering method, the visual vocabulary size, and the distance measure. The optimal parameter choice is shown to be quite context-dependent. In particular, using a large number of descriptors is interesting only when using our dissimilarity measure. We have also evaluated two novel variants: multiple assignment and rank aggregation. They are shown to further improve accuracy at the cost of higher memory usage and lower efficiency 
650 4 |a Journal Article 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
700 1 |a Harzallah, Hedi  |e verfasserin  |4 aut 
700 1 |a Verbeek, Jakob  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 1 vom: 20. Jan., Seite 2-11  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:32  |g year:2010  |g number:1  |g day:20  |g month:01  |g pages:2-11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.285  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 1  |b 20  |c 01  |h 2-11