Ultrafast self-assembly of microscale particles by open-channel flow
We developed an ultrafast microfluidic approach to self-assemble microparticles in three dimensions by taking advantage of simple photolithography and capillary action of microparticle-dispersed suspensions. The theoretical principles of high-speed assembly have been explained, and the experimental...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 7 vom: 06. Apr., Seite 4661-7 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Silicon Dioxide 7631-86-9 |
Zusammenfassung: | We developed an ultrafast microfluidic approach to self-assemble microparticles in three dimensions by taking advantage of simple photolithography and capillary action of microparticle-dispersed suspensions. The theoretical principles of high-speed assembly have been explained, and the experimental verifications of the assembly of various sizes of silica microspheres and silica gel microspheres within thin and long open microchannels by using this approach have been demonstrated. We anticipate that the presented technique will be widely used in the semiconductor and Bio-MEMS (microelectromechanical systems) fields because it offers a fast way to control 3D microscale particle assemblies and also has superb compatibility with photolithography, which can lead to an easy integration of particle assembly with existing CMOS (complementary metal oxide-semiconductor) and MEMS fabrication processes |
---|---|
Beschreibung: | Date Completed 21.06.2010 Date Revised 30.03.2010 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la903492w |