A nematode effector protein similar to annexins in host plants

Nematode parasitism genes encode secreted effector proteins that play a role in host infection. A homologue of the expressed Hg4F01 gene of the root-parasitic soybean cyst nematode, Heterodera glycines, encoding an annexin-like effector, was isolated in the related Heterodera schachtii to facilitate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 61(2010), 1 vom: 01., Seite 235-48
1. Verfasser: Patel, Nrupali (VerfasserIn)
Weitere Verfasser: Hamamouch, Noureddine, Li, Chunying, Hewezi, Tarek, Hussey, Richard S, Baum, Thomas J, Mitchum, Melissa G, Davis, Eric L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Annexins Arabidopsis Proteins DNA, Helminth Helminth Proteins
Beschreibung
Zusammenfassung:Nematode parasitism genes encode secreted effector proteins that play a role in host infection. A homologue of the expressed Hg4F01 gene of the root-parasitic soybean cyst nematode, Heterodera glycines, encoding an annexin-like effector, was isolated in the related Heterodera schachtii to facilitate use of Arabidopsis thaliana as a model host. Hs4F01 and its protein product were exclusively expressed within the dorsal oesophageal gland secretory cell in the parasitic stages of H. schachtii. Hs4F01 had a 41% predicted amino acid sequence identity to the nex-1 annexin of C. elegans and 33% identity to annexin-1 (annAt1) of Arabidopsis, it contained four conserved domains typical of the annexin family of calcium and phospholipid binding proteins, and it had a predicted signal peptide for secretion that was present in nematode annexins of only Heterodera spp. Constitutive expression of Hs4F01 in wild-type Arabidopsis promoted hyper-susceptibility to H. schachtii infection. Complementation of an AnnAt1 mutant by constitutive expression of Hs4F01 reverted mutant sensitivity to 75 mM NaCl, suggesting a similar function of the Hs4F01 annexin-like effector in the stress response by plant cells. Yeast two-hybrid assays confirmed a specific interaction between Hs4F01 and an Arabidopsis oxidoreductase member of the 2OG-Fe(II) oxygenase family, a type of plant enzyme demonstrated to promote susceptibility to oomycete pathogens. RNA interference assays that expressed double-stranded RNA complementary to Hs4F01 in transgenic Arabidopsis specifically decreased parasitic nematode Hs4F01 transcript levels and significantly reduced nematode infection levels. The combined data suggest that nematode secretion of an Hs4F01 annexin-like effector into host root cells may mimic plant annexin function during the parasitic interaction
Beschreibung:Date Completed 09.03.2010
Date Revised 18.05.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erp293