Biased discriminant euclidean embedding for content-based image retrieval

With many potential multimedia applications, content-based image retrieval (CBIR) has recently gained more attention for image management and web search. A wide variety of relevance feedback (RF) algorithms have been developed in recent years to improve the performance of CBIR systems. These RF algo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 2 vom: 01. Feb., Seite 545-54
1. Verfasser: Bian, Wei (VerfasserIn)
Weitere Verfasser: Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM192558951
003 DE-627
005 20231223193231.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2035223  |2 doi 
028 5 2 |a pubmed24n0642.xml 
035 |a (DE-627)NLM192558951 
035 |a (NLM)19884084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bian, Wei  |e verfasserin  |4 aut 
245 1 0 |a Biased discriminant euclidean embedding for content-based image retrieval 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2010 
500 |a Date Revised 19.01.2010 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With many potential multimedia applications, content-based image retrieval (CBIR) has recently gained more attention for image management and web search. A wide variety of relevance feedback (RF) algorithms have been developed in recent years to improve the performance of CBIR systems. These RF algorithms capture user's preferences and bridge the semantic gap. However, there is still a big room to further the RF performance, because the popular RF algorithms ignore the manifold structure of image low-level visual features. In this paper, we propose the biased discriminative Euclidean embedding (BDEE) which parameterises samples in the original high-dimensional ambient space to discover the intrinsic coordinate of image low-level visual features. BDEE precisely models both the intraclass geometry and interclass discrimination and never meets the undersampled problem. To consider unlabelled samples, a manifold regularization-based item is introduced and combined with BDEE to form the semi-supervised BDEE, or semi-BDEE for short. To justify the effectiveness of the proposed BDEE and semi-BDEE, we compare them against the conventional RF algorithms and show a significant improvement in terms of accuracy and stability based on a subset of the Corel image gallery 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 2 vom: 01. Feb., Seite 545-54  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:2  |g day:01  |g month:02  |g pages:545-54 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2035223  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 2  |b 01  |c 02  |h 545-54