|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM192462822 |
003 |
DE-627 |
005 |
20231223193047.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la902427r
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0642.xml
|
035 |
|
|
|a (DE-627)NLM192462822
|
035 |
|
|
|a (NLM)19874006
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Chih-Wei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Controlled self-assembly of quantum dot-block copolymer colloids in multiphase microfluidic reactors
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.03.2010
|
500 |
|
|
|a Date Revised 13.01.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The controlled self-assembly of large compound quantum dot micelles (QDCMs), consisting of constituents of polymer-stabilized quantum dots (QDs) and amphiphilic polystyrene-b-poly(acrylic acid) stabilizing chains, in gas-liquid segmented microfluidic reactors is demonstrated. Self-assembly is initiated by fast mixing of water with the polymer constituents via chaotic advection, as liquid plugs containing reactants move through a sinusoidal mixing channel. The resulting QDCMs are then processed within a postformation channel, where circulating flow patterns develop within the liquid plugs, followed by off-chip quenching and analysis by transmission electron microscopy (TEM). Particle processing via circulating flow is found to involve a combination of particle growth via collision-induced coalescence and shear-induced particle breakup. The final mean QDCM sizes represent kinetic states arising from the competition between these two mechanisms, depending on tunable chemical and flow parameters. A systematic investigation of the experimental variables that influence particle size and polydispersity, including water concentration, flow rate, and the gas-to-liquid flow ratio, is conducted, demonstrating tunability of QDCM sizes in the range of approximately 40-140 nm. The importance of shear-induced particle breakup in the limit of high shear is illustrated by a common minimum particle size, 41 +/- 1 nm, which is achieved for all water contents by increasing the total flow rate to sufficiently high values
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Colloids
|2 NLM
|
650 |
|
7 |
|a Micelles
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Oskooei, Ali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sinton, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Moffitt, Matthew G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 26(2010), 2 vom: 19. Jan., Seite 716-23
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:2
|g day:19
|g month:01
|g pages:716-23
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la902427r
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 2
|b 19
|c 01
|h 716-23
|