Dynamics of wetting revisited

We present new spreading-drop data obtained over four orders of time and apply our new analysis tool G-Dyna to demonstrate the specific range over which the various models of dynamic wetting would seem to apply for our experimental system. We follow the contact angle and radius dynamics of four liqu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 22 vom: 17. Nov., Seite 13034-44
1. Verfasser: Seveno, D (VerfasserIn)
Weitere Verfasser: Vaillant, A, Rioboo, R, Adão, H, Conti, J, De Coninck, J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present new spreading-drop data obtained over four orders of time and apply our new analysis tool G-Dyna to demonstrate the specific range over which the various models of dynamic wetting would seem to apply for our experimental system. We follow the contact angle and radius dynamics of four liquids on the smooth silica surface of silicon wafers or PET from the first milliseconds to several seconds. Analysis of the images allows us to make several hundred contact angle and droplet radius measurements with great accuracy. The G-Dyna software is then used to fit the data to the relevant theory (hydrodynamic, molecular-kinetic theory, Petrov and De Ruijter combined models, and Shikhmurzaev's formula). The distributions, correlations, and average values of the free parameters are analyzed and it is shown that for the systems studied even with very good data and a robust fitting procedure, it may be difficult to make reliable claims as to the model which best describes results for a given system. This conclusions also suggests that claims based on smaller data sets and less stringent fitting procedures should be treated with caution
Beschreibung:Date Completed 21.01.2010
Date Revised 10.11.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la901125a