|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM192176927 |
003 |
DE-627 |
005 |
20250210215956.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la902285t
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0641.xml
|
035 |
|
|
|a (DE-627)NLM192176927
|
035 |
|
|
|a (NLM)19842635
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Laloyaux, Xavier
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Surface and bulk collapse transitions of thermoresponsive polymer brushes
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.03.2010
|
500 |
|
|
|a Date Revised 13.01.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We elucidate the sequence of events occurring during the collapse transition of thermoresponsive copolymer brushes based on poly(di(ethyleneglycol) methyl ether methacrylate) chains (PMEO2MA) grown by atom-transfer radical polymerization (ATRP). The collapse of the bulk of the brush is followed by quartz crystal microbalance measurements with dissipation monitoring (QCM-D), and the collapse of its outer surface is assessed by measuring equilibrium water contact angles in the captive bubble configuration. The bulk of the brush collapses over a broad temperature interval (approximately 25 degrees C), and the end of this process is signaled by a sharp first-order transition of the surface of the brush. These observations support theoretical predictions regarding the occurrence of a vertical phase separation during collapse, with surface properties of thermoresponsive brushes exhibiting a sharp variation at a temperature of T(br)(surf). In contrast, the bulk properties of the brush vary smoothly, with a bulk transition T(br)(bulk) occurring on average approximately 8 degrees C below T(br)(surf) and approximately 5 degrees C below the lower critical solution temperature (LCST) of free chains in solution. These observations should also be valid for planar brushes of other neutral, water-soluble thermoresponsive polymers such as poly(N-isopropylacrylamide) (PNIPAM). We also propose a way to analyze more quantitatively the temperature dependence of the QCM-D response of thermoresponsive brushes and deliver a simple thermodynamic interpretation of equilibrium contact angles, which can be of use for other complex temperature-responsive solvophilic systems
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Mathy, Bertrand
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nysten, Bernard
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jonas, Alain M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1991
|g 26(2010), 2 vom: 19. Jan., Seite 838-47
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:2
|g day:19
|g month:01
|g pages:838-47
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la902285t
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 2
|b 19
|c 01
|h 838-47
|