Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles

PdAu dendrimer-encapsulated nanoparticles (DENs) were prepared via sequential reduction of the component metals. When Au is reduced onto 55-atom, preformed Pd DEN cores, analysis by UV-vis spectroscopy, electron microscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy leads to a...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 26(2010), 2 vom: 19. Jan., Seite 1137-46
Auteur principal: Weir, Michael G (Auteur)
Autres auteurs: Knecht, Marc R, Frenkel, Anatoly I, Crooks, Richard M
Format: Article en ligne
Langue:English
Publié: 2010
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:PdAu dendrimer-encapsulated nanoparticles (DENs) were prepared via sequential reduction of the component metals. When Au is reduced onto 55-atom, preformed Pd DEN cores, analysis by UV-vis spectroscopy, electron microscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy leads to a model consistent with inversion of the two metals. That is, Au migrates into the core and Pd resides on the surface. However, when Pd is reduced onto a 55-atom Au core, the expected Au core-Pd shell structure results. In this latter case, the EXAFS analysis suggests partial oxidation of the relatively thick Pd shell. When the DENs are extracted from their protective dendrimer stabilizers by alkylthiols, the resulting monolayer-protected clusters retain their original Au core-Pd shell structures. The structural analysis is consistent with a study of nanoparticle-catalyzed conversion of resazurin to resorufin. The key conclusion from this work is that correlation of structure to catalytic function for very small, bimetallic nanoparticles requires detailed information about atomic configuration
Description:Date Completed 11.03.2010
Date Revised 13.01.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la902233h