Stress tensor field visualization for implant planning in orthopedics

We demonstrate the application of advanced 3D visualization techniques to determine the optimal implant design and position in hip joint replacement planning. Our methods take as input the physiological stress distribution inside a patient's bone under load and the stress distribution inside th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 15(2009), 6 vom: 20. Nov., Seite 1399-406
1. Verfasser: Dick, Christian (VerfasserIn)
Weitere Verfasser: Georgii, Joachim, Burgkart, Rainer, Westermann, Rüdiger
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM192096206
003 DE-627
005 20231223192331.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2009.184  |2 doi 
028 5 2 |a pubmed24n0640.xml 
035 |a (DE-627)NLM192096206 
035 |a (NLM)19834214 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dick, Christian  |e verfasserin  |4 aut 
245 1 0 |a Stress tensor field visualization for implant planning in orthopedics 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2010 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We demonstrate the application of advanced 3D visualization techniques to determine the optimal implant design and position in hip joint replacement planning. Our methods take as input the physiological stress distribution inside a patient's bone under load and the stress distribution inside this bone under the same load after a simulated replacement surgery. The visualization aims at showing principal stress directions and magnitudes, as well as differences in both distributions. By visualizing changes of normal and shear stresses with respect to the principal stress directions of the physiological state, a comparative analysis of the physiological stress distribution and the stress distribution with implant is provided, and the implant parameters that most closely replicate the physiological stress state in order to avoid stress shielding can be determined. Our method combines volume rendering for the visualization of stress magnitudes with the tracing of short line segments for the visualization of stress directions. To improve depth perception, transparent, shaded, and antialiased lines are rendered in correct visibility order, and they are attenuated by the volume rendering. We use a focus+context approach to visually guide the user to relevant regions in the data, and to support a detailed stress analysis in these regions while preserving spatial context information. Since all of our techniques have been realized on the GPU, they can immediately react to changes in the simulated stress tensor field and thus provide an effective means for optimal implant selection and positioning in a computational steering environment 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Georgii, Joachim  |e verfasserin  |4 aut 
700 1 |a Burgkart, Rainer  |e verfasserin  |4 aut 
700 1 |a Westermann, Rüdiger  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 15(2009), 6 vom: 20. Nov., Seite 1399-406  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:15  |g year:2009  |g number:6  |g day:20  |g month:11  |g pages:1399-406 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2009.184  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2009  |e 6  |b 20  |c 11  |h 1399-406