Flow mapping and multivariate visualization of large spatial interaction data

Spatial interactions (or flows), such as population migration and disease spread, naturally form a weighted location-to-location network (graph). Such geographically embedded networks (graphs) are usually very large. For example, the county-to-county migration data in the U.S. has thousands of count...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 15(2009), 6 vom: 20. Nov., Seite 1041-8
1. Verfasser: Guo, Diansheng (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM192095757
003 DE-627
005 20231223192330.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2009.143  |2 doi 
028 5 2 |a pubmed24n0640.xml 
035 |a (DE-627)NLM192095757 
035 |a (NLM)19834170 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Diansheng  |e verfasserin  |4 aut 
245 1 0 |a Flow mapping and multivariate visualization of large spatial interaction data 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2010 
500 |a Date Revised 16.10.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spatial interactions (or flows), such as population migration and disease spread, naturally form a weighted location-to-location network (graph). Such geographically embedded networks (graphs) are usually very large. For example, the county-to-county migration data in the U.S. has thousands of counties and about a million migration paths. Moreover, many variables are associated with each flow, such as the number of migrants for different age groups, income levels, and occupations. It is a challenging task to visualize such data and discover network structures, multivariate relations, and their geographic patterns simultaneously. This paper addresses these challenges by developing an integrated interactive visualization framework that consists three coupled components: (1) a spatially constrained graph partitioning method that can construct a hierarchy of geographical regions (communities), where there are more flows or connections within regions than across regions; (2) a multivariate clustering and visualization method to detect and present multivariate patterns in the aggregated region-to-region flows; and (3) a highly interactive flow mapping component to map both flow and multivariate patterns in the geographic space, at different hierarchical levels. The proposed approach can process relatively large data sets and effectively discover and visualize major flow structures and multivariate relations at the same time. User interactions are supported to facilitate the understanding of both an overview and detailed patterns 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 15(2009), 6 vom: 20. Nov., Seite 1041-8  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:15  |g year:2009  |g number:6  |g day:20  |g month:11  |g pages:1041-8 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2009.143  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2009  |e 6  |b 20  |c 11  |h 1041-8