ActiviTree : interactive visual exploration of sequences in event-based data using graph similarity

The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 15(2009), 6 vom: 20. Nov., Seite 945-52
1. Verfasser: Vrotsou, Katerina (VerfasserIn)
Weitere Verfasser: Johansson, Jimmy, Cooper, Matthew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM192095625
003 DE-627
005 20231223192330.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2009.117  |2 doi 
028 5 2 |a pubmed24n0640.xml 
035 |a (DE-627)NLM192095625 
035 |a (NLM)19834158 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vrotsou, Katerina  |e verfasserin  |4 aut 
245 1 0 |a ActiviTree  |b interactive visual exploration of sequences in event-based data using graph similarity 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2010 
500 |a Date Revised 16.10.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Johansson, Jimmy  |e verfasserin  |4 aut 
700 1 |a Cooper, Matthew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 15(2009), 6 vom: 20. Nov., Seite 945-52  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:15  |g year:2009  |g number:6  |g day:20  |g month:11  |g pages:945-52 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2009.117  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2009  |e 6  |b 20  |c 11  |h 945-52