Self-assembly of alkanedithiols on Au(111) from solution : effect of chain length and self-assembly conditions

A comparative study on the adsorption of buthanedithiol (BDT), hexanedithiol (HDT), and nonanedithiol (NDT) on Au(111) from ethanolic and n-hexane solutions and two different preparation procedures is presented. SAM characterization is based on reflection-absorption infrared spectroscopy, electroche...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 22 vom: 17. Nov., Seite 12945-53
1. Verfasser: Millone, María Antonieta Daza (VerfasserIn)
Weitere Verfasser: Hamoudi, Hicham, Rodríguez, Luis, Rubert, Aldo, Benítez, Guillermo A, Vela, María Elena, Salvarezza, Roberto C, Gayone, J Esteban, Sánchez, Esteban A, Grizzi, Oscar, Dablemont, Céline, Esaulov, Vladimir A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A comparative study on the adsorption of buthanedithiol (BDT), hexanedithiol (HDT), and nonanedithiol (NDT) on Au(111) from ethanolic and n-hexane solutions and two different preparation procedures is presented. SAM characterization is based on reflection-absorption infrared spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, and time of flight direct recoil spectroscopy. Results indicate that one can obtain a standing-up phase of dithiols and that the amount of the precursor lying-down phase decreases from BDT to NDT, irrespective of the solvent and self-assembly conditions. A good ordering of the hydrocarbon chains in the standing-up configuration is observed for HDT and NDT when the system is prepared in degassed n-hexane with all operations carried out in the dark. Disulfide bridges at the free SH terminal groups are formed for HDT and to a lesser extent for NDT prepared in ethanol in the presence of oxygen, but we found no evidence of ordered multilayer formation in our experiments. No disulfides were observed for BDT that only forms the lying-down phase. Our results demonstrate the key role of the chain length and the procedure (solvent nature and oxygen presence) in controlling the surface structure and chemistry of SAMs dithiols on Au(111)
Beschreibung:Date Completed 21.01.2010
Date Revised 10.11.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la901601z