Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus
Copyright 2009 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 48(2010), 1 vom: 15. Jan., Seite 9-15 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins DNA, Complementary Plant Oils Transcription Factors WRINKLED1 protein, Arabidopsis |
Zusammenfassung: | Copyright 2009 Elsevier Masson SAS. All rights reserved. Rapeseed (Brassica napus) is one of the most important edible oilseed crops in the world and is increasingly used globally to produce bio-diesel. Therefore, increasing oil content of oilseed corps is of importance economically in both food and oil industries. The wri1 genes are differentially expressed in B. napus lines with different oil content. To investigate the effects of B. napus WRI1 (BnWRI1) on oil content, two Bnwri1 genes with different lengths, Bnwri1-1 and Bnwri1-2, were identified and sequenced. Homology analysis shows 80% amino acids of Bnwri1s are homologous to Arabidopsis thaliana WRI1 (AtWRI1). Overexpression of Bnwri1 cDNAs driven by cauliflower mosaic virus 35S-promoter in 51 transgenic A. thaliana lines resulted in 10-40% increased seed oil content and enlarged seed size and mass. Detailed analysis on transgenic embryos indicates an increased cell size other than cell number. In addition, Bnwri1 sequence polymorphism is highly related to oil content (p < 0.001). Taking together, Bnwri1 has potential applications in food and oil industries and in rapeseed breeding |
---|---|
Beschreibung: | Date Completed 04.05.2010 Date Revised 09.04.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2009.09.007 |