Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature
Here, we explore how interannual variations in environmental factors (i.e. temperature, precipitation and light) influence CO(2) fluxes (gross primary production and ecosystem respiration) in terrestrial ecosystems classified by vegetation type and the mycorrhizal type of dominant plants (arbuscular...
Veröffentlicht in: | The New phytologist. - 1979. - 185(2010), 1 vom: 01. Jan., Seite 226-36 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Carbon Dioxide 142M471B3J |
Zusammenfassung: | Here, we explore how interannual variations in environmental factors (i.e. temperature, precipitation and light) influence CO(2) fluxes (gross primary production and ecosystem respiration) in terrestrial ecosystems classified by vegetation type and the mycorrhizal type of dominant plants (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM)). We combined 236 site-year measurements of terrestrial ecosystem CO(2) fluxes and environmental factors from 50 eddy-covariance flux tower sites with information about climate, vegetation type and dominant plant species. Across large geographical distances, interannual variations in ecosystem CO(2) fluxes for EM-dominated sites were primarily controlled by interannual variations in mean annual temperature. By contrast, interannual variations in ecosystem CO(2) fluxes at AM-dominated sites were primarily controlled by interannual variations in precipitation. This study represents the first large-scale assessment of terrestrial CO(2) fluxes in multiple vegetation types classified according to dominant mycorrhizal association. Our results support and complement the hypothesis that bioclimatic conditions influence the distribution of AM and EM systems across large geographical distances, which leads to important differences in the major climatic factors controlling ecosystem CO(2) fluxes |
---|---|
Beschreibung: | Date Completed 15.06.2010 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/j.1469-8137.2009.03040.x |