Streptavidin-biotin binding in the presence of a polymer spacer. A theoretical description

The binding of streptavidin to biotin located at the terminal ends of poly(ethylene oxide) tethered to a planar surface is studied using molecular theory. The theoretical model is applied to mimic experiments (Langmuir 2008, 24, 2472) performed using drop-shape analysis to study receptor-ligand bind...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 20 vom: 20. Okt., Seite 12283-92
1. Verfasser: Ren, Chun-Lai (VerfasserIn)
Weitere Verfasser: Carvajal, Daniel, Shull, Kenneth R, Szleifer, Igal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Polyethylene Glycols 3WJQ0SDW1A Biotin 6SO6U10H04 Streptavidin 9013-20-1
LEADER 01000naa a22002652 4500
001 NLM191986089
003 DE-627
005 20231223192144.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1021/la901735d  |2 doi 
028 5 2 |a pubmed24n0640.xml 
035 |a (DE-627)NLM191986089 
035 |a (NLM)19821628 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Chun-Lai  |e verfasserin  |4 aut 
245 1 0 |a Streptavidin-biotin binding in the presence of a polymer spacer. A theoretical description 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2010 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The binding of streptavidin to biotin located at the terminal ends of poly(ethylene oxide) tethered to a planar surface is studied using molecular theory. The theoretical model is applied to mimic experiments (Langmuir 2008, 24, 2472) performed using drop-shape analysis to study receptor-ligand binding at the oil/water interface. Our theoretical predictions show very good agreements with the experimental results. Furthermore, the theory enables us to study the thermodynamic and structural behavior of the PEO-biotin + streptavidin layer. The interfacial structure, shown by the volume fraction profiles of bound proteins and polymers, indicates that the proteins form a thick layer supported by stretched polymers, where the thickness of the layer is greater than the height of the protein. When the polymer spacer is composed of PEO (3000), a thick layer with multilayers of proteins is formed, supported by the stretched polymer chains. It was found that thick multilayers of proteins are formed when long spacers are present or at very high protein surface coverages on short spacers. This shows that the flexibility of the polymer spacer plays an important role in determining the structure of the bound proteins due to their ability to accommodate highly distorted conformations to optimize binding and protein interactions. Protein domains are predicted when the amount of bound proteins is small due to the existence of streptavidin-streptavidin attractive interactions. As the number of proteins is increased, the competition between attractive interactions and steric repulsions determines the stability and structure of the bound layer. The theory predicts that the competition between these two forces leads to a phase separation at higher protein concentrations. The point where this transition happens depends on both spacer length and protein surface coverage and is an important consideration for practical applications of these and other similar systems. If the goal is to maximize protein binding, it is favorable to be above the layer transition, as multiple layers can accommodate greater bound protein densities. On the other hand, if the goal is to use these bound proteins as a linker group to build more complex structures, such as when avidin or streptavidin serves as a linker between two biotinylated polymers or proteins, the optimum is to be below the layer transition such that all bound linker proteins are available for further binding 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Polyethylene Glycols  |2 NLM 
650 7 |a 3WJQ0SDW1A  |2 NLM 
650 7 |a Biotin  |2 NLM 
650 7 |a 6SO6U10H04  |2 NLM 
650 7 |a Streptavidin  |2 NLM 
650 7 |a 9013-20-1  |2 NLM 
700 1 |a Carvajal, Daniel  |e verfasserin  |4 aut 
700 1 |a Shull, Kenneth R  |e verfasserin  |4 aut 
700 1 |a Szleifer, Igal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 25(2009), 20 vom: 20. Okt., Seite 12283-92  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:25  |g year:2009  |g number:20  |g day:20  |g month:10  |g pages:12283-92 
856 4 0 |u http://dx.doi.org/10.1021/la901735d  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 25  |j 2009  |e 20  |b 20  |c 10  |h 12283-92