Analysis of microporosity in ordered mesoporous hierarchically structured silica by combining physisorption with in situ small-angle scattering (SAXS and SANS)

The combination of physisorption experiments with simultaneous in situ small-angle X-ray and neutron scattering (SAXS/SANS) was used to elucidate the porosity in mesoporous silica with a trimodal pore structure. The material ("KLE-IL") contains spherical mesopores of 14 nm in diameter, wor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 21 vom: 03. Nov., Seite 12670-81
1. Verfasser: Mascotto, Simone (VerfasserIn)
Weitere Verfasser: Wallacher, Dirk, Brandt, Astrid, Hauss, Thomas, Thommes, Matthias, Zickler, Gerald A, Funari, Sérgio S, Timmann, Andreas, Smarsly, Bernd M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:The combination of physisorption experiments with simultaneous in situ small-angle X-ray and neutron scattering (SAXS/SANS) was used to elucidate the porosity in mesoporous silica with a trimodal pore structure. The material ("KLE-IL") contains spherical mesopores of 14 nm in diameter, worm-like mesopores (2-3 nm), and micropores, templated by a block copolymer and an ionic liquid surfactant, while the micropores originate from the hydrophilic block of the block copolymer. The main objective of the study was the quantification of the microporosity and the small mesopores and to find out if they are indeed located between the larger, spherical mesopores. Our in situ SAXS/SANS experiments took advantage of contrast matching of nitrogen (SANS, T = 77 K) and dibromomethane (SAXS, T = 290 K). By using the latter gas with a slightly larger kinetic diameter, it was possible to judge the accessibility of the pores under ambient conditions. The in situ experiments were supported by high-precision ex situ physisorption. Using suitable approaches for the SAXS/SANS analysis, it was possible to separate the content of the micropores and small mesopores
Beschreibung:Date Completed 28.12.2009
Date Revised 27.10.2009
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la9013619