|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM191945900 |
003 |
DE-627 |
005 |
20231223192102.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la9030969
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0640.xml
|
035 |
|
|
|a (DE-627)NLM191945900
|
035 |
|
|
|a (NLM)19817454
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Greenfield, Megan A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tunable mechanics of peptide nanofiber gels
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.05.2010
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The mechanical properties of self-assembled fibrillar networks are influenced by the specific intermolecular interactions that modulate fiber entanglements. We investigate how changing these interactions influences the mechanics of self-assembled nanofiber gels composed of peptide amphiphile (PA) molecules. PAs developed in our laboratory self-assemble into gels of nanofibers after neutralization or salt-mediated screening of the charged residues in their peptide segment. We report here on the gelation, stiffness, and response to deformation of gels formed from a negatively charged PA and HCl or CaCl(2). Scanning electron microscopy of these gels demonstrates a similar morphology, whereas the oscillatory rheological measurements indicate that the calcium-mediated ionic bridges in CaCl(2)-PA gels form stronger intra- and interfiber cross-links than the hydrogen bonds formed by the protonated carboxylic acid residues in HCl-PA gels. As a result, CaCl(2)-PA gels can withstand higher strains than HCl-PA gels. After exposure to a series of strain sweeps with increasing strain amplitude HCl- and CaCl(2)-PA gels both recover 42% of their original stiffness. In contrast, after sustained deformation at 100% strain, HCl-PA gels recover nearly 90% of their original stiffness after 10 min, while the CaCl(2)-PA gels only recover 35%. This result suggests that the hydrogen bonds formed by the protonated acids in the HCl-PA gels allow the gel to relax quickly to its initial state, while the strong calcium cross-links in the CaCl(2)-PA gels lock in the deformed structure and inhibit the gel's ability to recover. We also show that the rheological scaling behaviors of HCl- and CaCl(2)-PA gels are consistent with that of uncross- and cross-linked semiflexible biopolymer networks, respectively. The ability to modify how self-assembled fibrillar networks respond to deformations is important in developing self-assembled gels that can resist and recover from the large deformations that these gels encounter while serving as synthetic cell scaffolds in vivo
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
650 |
|
7 |
|a Peptides
|2 NLM
|
650 |
|
7 |
|a Calcium Chloride
|2 NLM
|
650 |
|
7 |
|a M4I0D6VV5M
|2 NLM
|
650 |
|
7 |
|a Hydrochloric Acid
|2 NLM
|
650 |
|
7 |
|a QTT17582CB
|2 NLM
|
700 |
1 |
|
|a Hoffman, Jessica R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a de la Cruz, Monica Olvera
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stupp, Samuel I
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 26(2010), 5 vom: 02. März, Seite 3641-7
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:5
|g day:02
|g month:03
|g pages:3641-7
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la9030969
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 5
|b 02
|c 03
|h 3641-7
|