Simple large-scale synthesis of hydroxyapatite nanoparticles : in situ observation of crystallization process

The noble synthesis method for hydroxyapatite (HAp) nanoparticles was exploited using a fairly simple reaction of Ca(OH)(2) and H(3)PO(4), which does not generate residual harmful anions and consequently does not need an additional washing process. HAp nanoparticles were found to yield from dicalciu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 1 vom: 05. Jan., Seite 384-8
1. Verfasser: Kim, Dong Wook (VerfasserIn)
Weitere Verfasser: Cho, In-Sun, Kim, Jin Young, Jang, Hae Lin, Han, Gill Sang, Ryu, Hyun-Seung, Shin, Heungsoo, Jung, Hyun Suk, Kim, Hyungtak, Hong, Kug Sun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phosphoric Acids Durapatite 91D9GV0Z28 phosphoric acid E4GA8884NN Calcium Hydroxide PF5DZW74VN
Beschreibung
Zusammenfassung:The noble synthesis method for hydroxyapatite (HAp) nanoparticles was exploited using a fairly simple reaction of Ca(OH)(2) and H(3)PO(4), which does not generate residual harmful anions and consequently does not need an additional washing process. HAp nanoparticles were found to yield from dicalcium phosphate dehydrate (DCPD) as the only intermediate phase, which was monitored by in situ observation study using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), (1)H and (31)P magic-angle spinning (MAS) NMR. Furthermore, we found that the phase evolution of HAp was preceded by heteronucleation of HAp onto the DCPD surface. The combination of scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-ES) analysis gave more information on the HAp crystallization process, which was found to be retarded by the residual Ca(OH)(2) and slow diffusion process of Ca ions into the interface between HAp and DCPD. These results demonstrate that the synthesis of pure HAp nanoparticles with high throughput can be achieved by controlling the residual Ca(OH)(2) and diffusion process of Ca ions
Beschreibung:Date Completed 02.03.2010
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la902157z