Compact integration factor methods in high spatial dimensions

The dominant cost for integration factor (IF) or exponential time differencing (ETD) methods is the repeated vector-matrix multiplications involving exponentials of discretization matrices of differential operators. Although the discretization matrices usually are sparse, their exponentials are not,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1998. - 227(2008), 10 vom: 01., Seite 5238-5255
1. Verfasser: Nie, Qing (VerfasserIn)
Weitere Verfasser: Wan, Frederic Y M, Zhang, Yong-Tao, Liu, Xin-Feng
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM191877883
003 DE-627
005 20250210205631.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0640.xml 
035 |a (DE-627)NLM191877883 
035 |a (NLM)19809596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nie, Qing  |e verfasserin  |4 aut 
245 1 0 |a Compact integration factor methods in high spatial dimensions 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 03.12.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The dominant cost for integration factor (IF) or exponential time differencing (ETD) methods is the repeated vector-matrix multiplications involving exponentials of discretization matrices of differential operators. Although the discretization matrices usually are sparse, their exponentials are not, unless the discretization matrices are diagonal. For example, a two-dimensional system of N × N spatial points, the exponential matrix is of a size of N(2) × N(2) based on direct representations. The vector-matrix multiplication is of O(N(4)), and the storage of such matrix is usually prohibitive even for a moderate size N. In this paper, we introduce a compact representation of the discretized differential operators for the IF and ETD methods in both two- and three-dimensions. In this approach, the storage and CPU cost are significantly reduced for both IF and ETD methods such that the use of this type of methods becomes possible and attractive for two- or three-dimensional systems. For the case of two-dimensional systems, the required storage and CPU cost are reduced to O(N(2)) and O(N(3)), respectively. The improvement on three-dimensional systems is even more significant. We analyze and apply this technique to a class of semi-implicit integration factor method recently developed for stiff reaction-diffusion equations. Direct simulations on test equations along with applications to a morphogen system in two-dimensions and an intra-cellular signaling system in three-dimensions demonstrate an excellent efficiency of the new approach 
650 4 |a Journal Article 
700 1 |a Wan, Frederic Y M  |e verfasserin  |4 aut 
700 1 |a Zhang, Yong-Tao  |e verfasserin  |4 aut 
700 1 |a Liu, Xin-Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1998  |g 227(2008), 10 vom: 01., Seite 5238-5255  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:227  |g year:2008  |g number:10  |g day:01  |g pages:5238-5255 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 227  |j 2008  |e 10  |b 01  |h 5238-5255