Compensated optimal grids for elliptic boundary-value problems

A method is proposed which allows to efficiently treat elliptic problems on unbounded domains in two and three spatial dimensions in which one is only interested in obtaining accurate solutions at the domain boundary. The method is an extension of the optimal grid approach for elliptic problems, bas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1998. - 227(2008), 19 vom: 01. Okt., Seite 8622-8635
1. Verfasser: Posta, F (VerfasserIn)
Weitere Verfasser: Shvartsman, S Y, Muratov, C B
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM191809365
003 DE-627
005 20250210204218.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0639.xml 
035 |a (DE-627)NLM191809365 
035 |a (NLM)19802366 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Posta, F  |e verfasserin  |4 aut 
245 1 0 |a Compensated optimal grids for elliptic boundary-value problems 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A method is proposed which allows to efficiently treat elliptic problems on unbounded domains in two and three spatial dimensions in which one is only interested in obtaining accurate solutions at the domain boundary. The method is an extension of the optimal grid approach for elliptic problems, based on optimal rational approximation of the associated Neumann-to-Dirichlet map in Fourier space. It is shown that, using certain types of boundary discretization, one can go from second-order accurate schemes to essentially spectrally accurate schemes in two-dimensional problems, and to fourth-order accurate schemes in three-dimensional problems without any increase in the computational complexity. The main idea of the method is to modify the impedance function being approximated to compensate for the numerical dispersion introduced by a small finite-difference stencil discretizing the differential operator on the boundary. We illustrate how the method can be efficiently applied to nonlinear problems arising in modeling of cell communication 
650 4 |a Journal Article 
700 1 |a Shvartsman, S Y  |e verfasserin  |4 aut 
700 1 |a Muratov, C B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1998  |g 227(2008), 19 vom: 01. Okt., Seite 8622-8635  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:227  |g year:2008  |g number:19  |g day:01  |g month:10  |g pages:8622-8635 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 227  |j 2008  |e 19  |b 01  |c 10  |h 8622-8635