Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification

We assessed potential toxicity of fungicides to natural bacterial communities from a constructed wetland, located in southern Sweden, and compared the sensitivity of two endpoints indicating bacterial activity, leucine incorporation, and potential denitrification, in detecting toxicity. The effects...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 19(2010), 2 vom: 19. Feb., Seite 285-94
1. Verfasser: Milenkovski, Susann (VerfasserIn)
Weitere Verfasser: Bååth, Erland, Lindgren, Per-Eric, Berglund, Olof
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Chlorophenols Fungicides, Industrial Industrial Waste Nitrites Water Pollutants, Chemical Water 059QF0KO0R 3,5-dichlorophenol mehr... FG32L88KO9 Leucine GMW67QNF9C
Beschreibung
Zusammenfassung:We assessed potential toxicity of fungicides to natural bacterial communities from a constructed wetland, located in southern Sweden, and compared the sensitivity of two endpoints indicating bacterial activity, leucine incorporation, and potential denitrification, in detecting toxicity. The effects of eight fungicides (benomyl, carbendazim, carboxin, captan, cycloheximide, fenpropimorph, propiconazole, and thiram), two bactericides (bronopol and chlortetracycline) as controls, and one reference compound (3,5-dichlorophenol), were tested in a water-sediment microcosm set-up. Leucine incorporation was measured in both the water and sediment column, while potential denitrification was measured for the entire microcosm. The bactericides and the reference compound gave sigmoid concentration-response curves for both endpoints in all but one case. The fungicides thiram, captan, and benomyl, and to a lesser extent fenpropimorph and propiconazole had quantifiable toxic effects on leucine incorporation, with EC(50) values ranging from 3 to 70 mg l(-1), while carbendazim, carboxin, and cycloheximide had little effect at the investigated concentrations. Only thiram and captan inhibited potential denitrification; the other fungicides showed no quantifiable effect. A greater toxic effect on leucine incorporation was recorded for bacterial communities associated with the water column, compared to the sediment column, for all tested compounds. Leucine incorporation was the more sensitive method for toxicity assessment of bacterial communities, and also allowed for a rapid and simple way of comparing exposure in the sediment and water column, making it an attractive standard method for community based toxicological assays in aquatic environments
Beschreibung:Date Completed 30.08.2010
Date Revised 20.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-009-0411-5