Lightweight probabilistic texture retrieval

This paper contemplates the framework of probabilistic image retrieval in the wavelet domain from a computational point of view. We not only focus on achieving high retrieval rates, but also discuss possible performance bottlenecks which might prevent practical application. We propose a novel retrie...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 1 vom: 01. Jan., Seite 241-53
1. Verfasser: Kwitt, Roland (VerfasserIn)
Weitere Verfasser: Uhl, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM19139629X
003 DE-627
005 20231223191139.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2032313  |2 doi 
028 5 2 |a pubmed24n0638.xml 
035 |a (DE-627)NLM19139629X 
035 |a (NLM)19758865 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kwitt, Roland  |e verfasserin  |4 aut 
245 1 0 |a Lightweight probabilistic texture retrieval 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.02.2010 
500 |a Date Revised 16.12.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper contemplates the framework of probabilistic image retrieval in the wavelet domain from a computational point of view. We not only focus on achieving high retrieval rates, but also discuss possible performance bottlenecks which might prevent practical application. We propose a novel retrieval approach which is motivated by previous research work on modeling the marginal distributions of wavelet transform coefficients. The building blocks of our work are the dual-tree complex wavelet transform and a number of statistical models for the coefficient magnitudes. Image similarity measurement is accomplished by using closed-form solutions for the Kullback-Leibler divergences between the statistical models. We provide an in-depth computational analysis regarding the number of arithmetic operations required for similarity measurement and model parameter estimation. The experimental retrieval results on a widely used texture image database show that we achieve competitive retrieval results at low computational cost 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Uhl, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 1 vom: 01. Jan., Seite 241-53  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:1  |g day:01  |g month:01  |g pages:241-53 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2032313  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 1  |b 01  |c 01  |h 241-53