|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM191353086 |
003 |
DE-627 |
005 |
20231223191049.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la902936u
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0638.xml
|
035 |
|
|
|a (DE-627)NLM191353086
|
035 |
|
|
|a (NLM)19754194
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gu, Changdong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Micro/nanobinary structure of silver films on copper alloys with stable water-repellent property under dynamic conditions
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.01.2010
|
500 |
|
|
|a Date Revised 13.10.2009
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Facile galvanic replacement was adopted to grow cauliflower-like and dendrite coral-like silver films on commercial copper alloy substrates. Both types of silver films possess micro/nanobinary structures, the formation and evolution of which are achieved through the oriented attachment growth mechanism. After modification by a monolayer of n-dodecanethiol, the cauliflower-like silver film becomes hydrophobic with a contact angle (CA) of 115 +/- 1 degrees and a CA hysteresis of 74 +/- 1 degrees and the dendrite coral-like silver film exhibits the extreme hydrophobicity characterized by a CA of 158 +/- 1 degrees and a CA hysteresis of less than 2 +/- 1 degrees . Furthermore, the bouncing property of millimeter-sized water droplets on the modified dendrite coral-like silver surface is much better than that on the modified cauliflower-like silver surface. The different wetting property between the two silver films is attributed to the surface roughness. Larger surface roughness provided by the dendrite coral-like silver film means more air pockets, among the micro/nanobinary structures, that bounce water droplets back more strongly. The dynamic bouncing behavior of water droplets, such as restitution coefficient and contact time, on the superhydrophobic modified cauliflower-like silver surface was also investigated at different impact velocities
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Ren, Hang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tu, Jiangping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Tong-Yi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 25(2009), 20 vom: 20. Okt., Seite 12299-307
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2009
|g number:20
|g day:20
|g month:10
|g pages:12299-307
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la902936u
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2009
|e 20
|b 20
|c 10
|h 12299-307
|